US009207880B2

a2 United States Patent 10) Patent No.: US 9,207,880 B2
Lee 45) Date of Patent: Dec. 8, 2015
(54) PROCESSOR WITH (56) References Cited
ARCHITECTURALLY-VISIBLE U.S. PATENT DOCUMENTS
PROGRAMMABLE ON-DIE STORAGE TO -
STORE DATA THAT IS ACCESSIBLE BY 6,389,579 B1* 52002 Phillipsetal. 716/114
INSTRUCTION 6,757,700 B1* 6/2004 Druck 708/204
. . 6,760,390 B1* 7/2004 Desaictal. 375/341
(71) Applicant: Intel Corporation, Santa Clara, CA 9015217 B2* 42015 Amoldetal. 708/235
(US) 2007/0288909 AL* 12/2007 Cheung etal. 717/136
. 2009/0070398 Al* 3/2009 Mejdrich et al. 708/440
(72) Inventor: Vietor W. Lee, Santa Clara, CA (US) 2013/0262540 Al* 10/2013 Arnoldetal. 708/235
R 2014/0222883 Al* 82014 Pineiro etal. 708/523
(73) Assignee: Intel Corporation, Santa Clara, CA Hete €
(US) * cited by examiner
(*) Notice: Subject. to any disclaimer,. the term of this Primary Examiner — Tammara Peyton
%atserg llSSZ)((lt)E):I}bde((l) gar adjusted under 35 (74) Attorney, Agent, or Firm — Vecchia Patent Agent, LLC
S.C. v ys.
(21) Appl. No.: 14/142,734 G7) ABSTRACT
(22) Filed: Dec. 27, 2013 A processor of an aspect includes an on-die progamable
. L architecturally-visible storage. The processor also includes a
(65) Prior Publication Data decode unit to receive a data access instruction of an instruc-
US 2015/0186077 Al Jul. 2, 2015 tion set of the processor. The data access instmction to indi-
cate a data address that is to be associated with data to be
(51) Int. Cl. stored in the on-die programmable architecturally-visible
GOGF 3/06 (2006.01) storage, to indicate a data size associated with the data to be
Gool” 9/38 (2006.01) stored in the on-die programmable architecturally-visible
GO6F 13/28 (2006.01) storage, and to indicate a destination storage location of the
(52) US.CL processor. An execution unit is coupled with the decode unit
CPC ..o GO6F 3/0688 (2013.01); GOGF 3/0604 and the on-die programmable architecturally-visible storage.
(2013.01); GO6F 3/0638 (2013.01); GO6F 9/38 The execution unit is on-die with the on-die programmable
(2013.01); GOGF 13/28 (2013.01); GOGF storage. The execution unit is operable, in response to the data
2003/0695 (2013.01) access instruction, to store the data, which is associated with
(58) Field of Classification Search the data address and the data size, in the destination storage
CPC e GO6F 3/0604 location that is to be indicated by the instruction.
USPC ittt 708/235, 440
See application file for complete search history. 32 Claims, 14 Drawing Sheets
PR R ON-DIE PROGRAMMABLE
~ ARCHITECTURALLYVISIBLE
DATA 310 S
FROM SCURCE
OPERAND
f i DATA
oATA (e.q., IN MEMORY) ADORESS
STORE 312
INSTRUCTION
330
Lo | o |
retrrenenaseor 3] o ' el ’T—‘—:f g
04 310 314
204 306 DATA DATA SIZE

L

US 9,207,880 B2

U.S. Patent Dec. 8, 2015 Sheet 1 of 14
PROCESSOR ONDIE PROGRAMMABLE
100 — ARCHITECTURALLY-VISIBLE
\ STORAGE
108
oaTA |
AT ADDRESS |
ACCESS 192 4
INSTRUCTION
102 .
DECODE EXECUTION > BaTA #1106
Céi> UNIT UNIT e ’
NN i~ e“‘“f;/(/ _________________ T
10 114
104 106 DATA DATA SIZE
DATA
10
Lw
DESTINATION
STORAGE LOCATION
{e.9. REGISTER)

FiG. 1

U.S. Patent Dec. 8, 2015 Sheet 2 of 14 US 9,207,880 B2

FIG. 2

METHOD
IN PROCESSOR

220
\

RECEIVE DATA ACCESS INSTRUCTION OF
INSTRUCTION SET OF PROCESSOR, DATA ACCESS
INSTRUCTION INDICATING DATA ADDRESS TO BE ASSOCIATED
WITH DATA TO BE STORED IN ON-DIE PROGRAMMABLE
ARCHITECTURALLY-VISIBLE STORAGE OF PROCESSOR, 221
INDICATING DATA SIZE ASSOCIATED WITH DATA
TO BE STORED IN ON-DIE PROGRAMMABLE
ARCHITECTURALLY-VISIBLE STORAGE, AND INDICATING
DESTINATION STORAGE LOCATION OF PROCESSOR

!

STORE DATA, WHICH IS ASSOCIATED WITH DATA ADDRESS
AND DATA SIZE, IN DESTINATION STORAGE LOCATION
INDICATED BY DATA ACCESS INSTRUCTION IN RESPONSE | ™~222

TO DATA ACCESS INSTRUCTION

US 9,207,880 B2

U.S. Patent Dec. 8, 2015 Sheet 3 of 14
PRG%%%SER ON-GHE PROGRAMMABLE
\ ARCHITECTURALLY-VISIBLE
§ _ STORAGE
DATA 310 308
FROM SOURCE
OPERAND
o AL DATA
. (e, IN MEMORY) LGl
STORE 12
NSTRUCTION
330
Dicoazz EXECUTION DATA 310
NIT UNIT /
s K ;
Laro 314
304 208 DATA DATA SIZE

FiG. 3

U.S. Patent Dec. 8, 2015 Sheet 4 of 14 US 9,207,880 B2

SYSTEM
f-' 440
PROCESSOR
400
LOGICAL ONDIE
PROCESSOR PROGRAMMABLE AUTOMATED MEMORY
ARCHITECTURALLY- DATA 444
446 VISIBLE STORAGE TRANSFER
— 408 ’ CONTROLLER ¢
DATA
DATA 442 STRUCTURE
A STRUCTURE 450
CONTROL 450
REGISTER
448 <

FiG. 4

U.S. Patent Dec. 8, 2015 Sheet 5 of 14 US 9,207,880 B2

FiG, &5
MODEL SPECIFIC REGISTER
STORE 552
INSTRUCTION
(e.g., WRMSR)
5 STARTING ADDRESS
554
READ
INSTRUCTION
< (eg., RDMSR) SIZE / EXTENT
856

U.S. Patent Dec. 8, 2015 Sheet 6 of 14 US 9,207,880 B2
DATA ACCESS INSTRUCTION
FORMAT
602
ORCODE DESTINATION DATA ADDRESS DATA SIZE
SPECIFIER SPECIFIER {OPTIONAL)
660 662 664 665
FiG. 6A
DATA STORE INSTRUCTION
FORMAT
630
OPCODE SOURCE DATA ADDRESS DATA SIZE
SPECIFIER SPECIFIER (OPTIONAL}
661 668 664 665

FIG. 6B

U.S. Patent Dec. 8, 2015 Sheet 7 of 14 US 9,207,880 B2
et PIPELINE 700 FIG. TA
R R R REGISTER RITE BACKI., o 1
FETCH) 0T IDECODEIALLOC, RENAMING] SCHEDULE | READ/ | EXECUTE STAGE | MEMORY e ot COMMIT !
702 707 | 707 | 710 712 MEMORY READ 717 WRITE 724
704 ! 722 |
e R 714 717 R
BRANCH PREDICTION NG TRUG TION CACHE UNT 737 M-
UNIT 732 T NSTRUCTION TLB UNIT 737
CORE 740
'\\ NSTRUCTION FETCH 737
¥
730 ,
RO UTION BN ORI e I A =
EXECUTION ENGINE " A LR
UNIT750 e -t - ¢
. L UNIT 752 |
R A el § o
SRR 2
I RETIREMENTUNIT ™ ™ souEpiiER UNITE) 757 |
FiG. T8 i [S W g it T A 4
| l | —
| PHYSICAL REGISTER FILES UNIT(S) 757
|
| S——— JRI, | f
EXECUTION MEMORY
UNIT(S) ACCESS
772 UNITSY 774
EXECUTION CLUSTER(S) 770 »
TATA TLB UNIT '
MEMORY 772 CACHE
unr77o [DATATACREUNIT] | unr [
74 177

U.S. Patent Dec. 8, 2015 Sheet 8 of 14 US 9,207,880 B2

Fit3, 8A FiG. 88
MSTRUCTION DECODE WRITE MASK REGISTERS
500 828
& 2
k: ki 7
SCALAR VECTOR 16-WIDE VECTOR ALU
UNIT LT 828
808 810
& 8 & &
47 : ¥
SCALAR VECTOR REPQQME sv«.gggm
REGISTERS || REGISTERS
812 w14 % E
& % k7
2 VECTOR
L1 CACHE REGISTERS
806 814
&
3 3
LOTAL SUBSET OF THE L NUMERIC NUMERIC
CACHE CONVERT CONVERT
804 8227 8728
.E& 2
¥
gl NG *;%";WORK — 1 DATA DACHE
3084

U.S. Patent

PROCESSOR 900 \

FiG. 8

Dec. 8, 2015 Sheet 9 of 14 US 9,207,880 B2
TSPECIAL | CORE 907A [CORE 902N | SYSTEM AGENT
PURPOSE v UNIT 910
10610908 | | ity | Jweni | OACHE
UNT(S) | | | UNITES) 1 BUS
5044 LSO | = e | CONTROLLER
SHARED CAGHEUNITS s08 || MENORy 1} UNTISISIS
P Edenptydopighu S It controLLER g
e o mm:;::_giﬁgﬁ%:—;;::m UNIT(S) 914 |

U.S. Patent Dec. 8, 2015 Sheet 10 of 14 US 9,207,880 B2

1000 A 1015
\ | =l 1o
|
- E:.. — PROCESSOR |™ ~—
E B / 101()5E
1045 " | _— 1040
' [ConTROLLER
co- E-—-—- MBI MEMORY
| PROCESSOR | [| cver o I
b e e B
1060 —_ .i..,.,,/f‘..;‘%
" . 1oH1050 |
a |

FIG. 10

U.S. Patent

Dec. 8, 2015

Sheet 11 of 14 US 9,207,880 B2
1400 \
PROCESSOR PROCESBORI
WVERORY COPROCESSOR MEMORY
1132 1134
IMC MC b
172 sz
1450
1176|:1 " 188 . 1186
1170 p-p op B jonl pp ! pp l 1180
? kﬁsz ? %,-—1154
e E ~ 1194
‘ . y 119
lcoprocessor, 119 pp CHIPSET 1180 pp 8
l 138 i U 1192 | up 1186
BUS BRIDGE 1O DEVICES ALDIO VO PROCESSCOR
1148 1114 1124 1115
i { 10 o
KEYBOARD! | ... 1422 COMM e 1127 DATA STORAGE
MOUSE DEVICES
1 [cabEanD
FIG. 91 80—~ "oara | N1

U.S. Patent Dec. 8, 2015

Sheet 12 of 14 US 9,207,880 B2
, VO DEVICES i ‘
P
1200 \
PROCESSOR PROCESSOR
MEMORY MEMORY
1132 1134
L4 oL CL p
1178 1150
1175--7 \ i g—--ﬂﬂ@r_..ﬁ%
"o tpp pp| Tlppl |pp| 10
ﬁ 18 [%.,—- 1154
| 1194 . 1498
PP =T st s
UF o 1186 1180
LEGACY 1O
115

FiG. 12

U.S. Patent

FiG. 13

US 9,207,880 B2

Dec. 8, 2015 Sheet 13 of 14
APPLICATION PROCESSOR 1310
SYSTEM ON ACHIP CORE 9024 E' CORE 902N "; SYSTEM AGENT
UNITSHE | == ¢ Dunmg | o
944 P8 oo 1y
e A]
i SHARED CACHE UNIT(S) 906 i/
i/
i {
mmmmmmmmmmmm i/
| /
COPROCESSOR(S) 1320 bt Thmemmmmre vy] BUS
S0 INTERCONNECT UNITS) 1202 1 cONTROLLER
T TR UNIT(S) 916
s g \\\ _\\
INTEGRATED
MEMORY SRAM UNIT , DISPLAY UNIT
CONTROLLER £230 DRA UNIT 1332 1340
UNIT(S) 514

U.S. Patent

Dec. 8, 2015 Sheet 14 of 14 US 9,207,880 B2

PROCESSOR WITH AT
PROCESSOR WITHOUT AN X86 ms*’;i%s*; Q(;@N;EE)'([ag oRE
INSTRUCTION SET CORE 1414 Rl

£ £
HARDWARE

ALTERNATIVE SOFTWARE
INSTRUGTION SET
BINARY COBE 1410 . FiG. 14

! INSTRUCTION
CONVERTER 1412
X6 BINARY CODE 1406
ALTERNATIVE T
INSTRUCTION SET X86 COMPILER 1.4;;4)

COMPLER 1408 %

e

HIGH LEVEL LANGUAGE 1402

US 9,207,880 B2

1
PROCESSOR WITH
ARCHITECTURALLY-VISIBLE
PROGRAMMABLE ON-DIE STORAGE TO
STORE DATA THAT IS ACCESSIBLE BY
INSTRUCTION

BACKGROUND

1. Technical Field

Embodiments described herein generally relate to proces-
sors. In particular, embodiments described herein generally
relate to processors having on-die memories to store data.

2. Background Information

Logarithmic, exponential, cosine, sine, hyperbolic sine,
arc-tangent, reciprocal square root, and various other tran-
scendental math functions are commonly evaluated in pro-
cessors. For example, such transcendental math functions are
often used in scientific applications, physics-based computa-
tional graphics, and other applications where such functions
appear.

In order to evaluate certain more common transcendental
math functions, some processors include an on-die read only
memory (ROM) that stores a hardware lookup table that has
approximate or starting values for the transcendental func-
tion. The hardware lookup table is typically programmed into
the on-die ROM by the processor’s manufacturer at the time
when the processor is manufactured. During use, when the
function needs to be evaluated (e.g., by a software applica-
tion), an appropriate value may be retrieved from the hard-
ware lookup table. Commonly, the values stored in the table
may be those fixed values that the processor’s manufacturer
believes are the most generally useful and/or useful for the
most common applications. In some cases, the retrieved value
may have an accuracy and/or precision sufficient for the
intended use. In other cases, when higher accuracy and/or
precision values are desired, the retrieved value may be itera-
tively refined in software.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments. In the drawings:

FIG. 1 is a block diagram of an embodiment of a processor
operable to perform an embodiment of a data access instruc-
tion to access data in programmable architecturally-visible
on-die storage.

FIG. 2 is a block flow diagram of an embodiment of a
method of performing an embodiment of a data access
instruction.

FIG. 3 is a block diagram of an embodiment of a processor
that is operable to perform an embodiment of a data store
instruction to store data in an on-die programmable and archi-
tecturally-visible storage.

FIG. 4 is a block diagram of an embodiment of a system
having an automated data transfer controller to transfer data
from memory to an on-die programmable architecturally vis-
ible storage.

FIG. 5 is a block diagram of an embodiment of a control
register that is operable to store information about an on-die
programmable and architecturally-visible storage.

FIG. 6A is a block diagram of an embodiment of a suitable
instruction format for a data access instruction.

FIG. 6B is a block diagram of an embodiment of a suitable
instruction format for a data store instruction.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention.

FIG. 7B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention.

FIG. 8A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
and with its local subset of the Level 2 (L.2) cache, according
to embodiments of the invention.

FIG. 8B is an expanded view of part of the processor core
in FIG. 8A according to embodiments of the invention.

FIG. 9 is a block diagram of a processor that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention.

FIG. 10 shown is a block diagram of a system in accor-
dance with one embodiment of the present invention.

FIG. 11 shown is a block diagram of a first more specific
exemplary system in accordance with an embodiment of the
present invention.

FIG. 12 shown is a block diagram of'a second more specific
exemplary system in accordance with an embodiment of the
present invention.

FIG. 13 shown is a block diagram of a SoC in accordance
with an embodiment of the present invention.

FIG. 14 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Disclosed herein are data access instructions to access data
in architecturally-visible programmable on-die storage, pro-
cessors to perform the instructions, methods performed by the
processors when performing the instructions, and systems
incorporating one or more processors to perform the instruc-
tions. In the following description, numerous specific details
are set forth (e.g., specific instruction operations, types of
on-die storage, ways of storing data in an on-die storage,
processor configurations, microarchitectural details,
sequences of operations, etc.). However, embodiments may
be practiced without these specific details. In other instances,
well-known circuits, structures and techniques have not been
shown in detail to avoid obscuring the understanding of the
description.

One possible drawback to using an on-die ROM to store a
hardware lookup table, which is an approach that was dis-
cussed in the background section, is that one or more of the
manufacturing cost, size, and/or power consumption of the
on-die ROM may tend to limit its applicability to storing
hardware lookup tables for only certain of the more com-
monly used and/or more important transcendental functions.
For example, processors may include such hardware lookup
tables in on-die ROM for the most commonly used functions
(e.g., exponential and logarithmic functions), but not for less
commonly used functions (e.g., arc-tangent, hyperbolic sine,
etc.). Often, during the design and manufacturing process, the
manufacturer ofthe processor may weigh the pros and cons of
including a hardware lookup table for such less commonly
used transcendental functions, and determine that the costs of
including the additional amount of on-die ROM needed to
accommodate the hardware lookup tables outweigh the ben-

US 9,207,880 B2

3

efits ofhaving the hardware lookup tables. However, such less
commonly used transcendental functions often still need to be
evaluated at least sometimes. Moreover, in some implemen-
tations (e.g., certain types of software applications and/or
certain uses), the evaluation of such functions may be wide-
spread and/or may significantly affect performance. If a hard-
ware lookup table is not provided for these functions, then the
functions may need to be evaluated by software using a table
in system memory. However, such software lookup tables in
system memory generally have relatively high access laten-
cies, which generally results in inferior performance.

Another possible drawback to using such an on-die ROM is
that the values stored in the on-die ROM are fixed and inflex-
ible. For example, the values stored in the on-die ROM are
typically fixed at the time of manufacture of the processor,
and generally cannot be changed thereafter (e.g., the pro-
grammer and/or software cannot change them). As its name
implies, the on-die ROM is “read only,” and generally is not
writable by the programmer and/or software. Often, the val-
ues stored in the hardware lookup table are those expected by
the processor’s manufacturer to be overall most useful (e.g.,
useful in the most common and/or widespread and/or impor-
tant applications). However, for some implementations, the
fixed values may have accuracy and/or precision that is either
too low or too high for the intended use. Ifthe accuracy and/or
precision are too low for the intended use, this may mean that
additional refinement in software may be needed, which gen-
erally tends to reduce performance. Conversely, if the accu-
racy and/or precision is too high for the intended use, then
essentially more bits were used than were needed, which
generally results in greater manufacturing cost, area on die,
and/or power consumption. As a result, such fixed values
stored in the on-die ROM essentially represent a one-size-fits
all solution. The processor manufacturer decides what values
to program in the on-die programmable ROM not software
and/or the programmer.

FIG. 1 is a block diagram of an embodiment of a processor
100 that is operable to perform an embodiment of a data
access instruction 102 to lookup or otherwise access data 108
in programmable architecturally-visible on-die storage 108.
In some embodiments, the processor may be a general-pur-
pose processor (e.g., of the type used in desktop, laptop, or
other computers). Alternatively, the processor may be a spe-
cial-purpose processor. Examples of suitable special-purpose
processors include, but are not limited to, graphics proces-
sors, cryptographic processors, network processors, commu-
nications processors, co-processors (e.g., physics co-proces-
sors), embedded processors, digital signal processors (DSPs),
and controllers (e.g., microcontrollers), to name just a few
examples. The processor may be any of various complex
instruction set computing (CISC) processors, various
reduced instruction set computing (RISC) processors, vari-
ous very long instruction word (VLIW) processors, various
hybrids thereof, or other types of processors.

During operation, the processor 100 may receive the
embodiment of the data access instruction 102. For example,
the instruction may be received from an instruction fetch unit,
an instruction queue, or the like. The instruction may repre-
sent a macroinstruction, assembly language instruction,
machine code instruction, or other instruction or control sig-
nal of an instruction set of the processor. In some embodi-
ments, the data access instruction may be a user-level instruc-
tion capable of being performed by user-level software (e.g.,
user-level applications not just the operating system or simi-
lar privileged and/or supervisory-level software). For
example, the user-level instruction may be performed at ring
3 instead of only at ring 0. As will be explained further below,

10

15

20

25

30

35

40

45

50

55

60

65

4

the data access instruction may be operable to cause or result
in the processor accessing or looking up data in the program-
mable architecturally-visible on-die storage 108.

In some embodiments, the data access instruction may
explicitly specity (e.g., through one or more fields or a set of
bits), or otherwise indicate (e.g., implicitly indicate), a data
address 112 associated with desired data 110 to be looked up
or otherwise accessed. The term “data address” is used
broadly herein to refer to an offset, index, pointer, relative
position, displacement, or various ways known in the arts to
indicate or identify data stored in a table, list, array, or other
datastructure (e.g., indicate a single entry in a table, indicate
a single item in a list, etc.). In one particular example,
embodiment, a multi-bit value (e.g., 8-bit value or a least
significant portion thereof) may indicate a particular entry or
index in a table or list. The instruction may specify or indicate
the data address in various different ways. In some embodi-
ments, the data address may be provided by an immediate of
the instruction. In other embodiments, the data address may
be stored a register (e.g., a general-purpose register) that is
explicitly specified or implicitly indicated by the instruction.
In other embodiments, the data address may be specified
through a field or one or more bits of the instruction format.
Although in the illustration only single on-die storage 108 is
shown, in some embodiments, there may optionally be mul-
tiple programmable on-die storage and/or each program-
mable on-die storage may optionally have multiple tables or
other data structures. In such embodiments, the instruction
may select or indicate (e.g., have a field to specify, implicitly
indicate, etc.) the on-die storage 108 and/or the data structure.
In such cases the data address may be relative to the start (e.g.,
first entry) of the indicated programmable on-die storage
and/or data structure. The particular on-die storage or data
structure may be specified or indicated by a field of the
instruction, an immediate, a value in a register, or may be
implicit to the instruction.

In some embodiments, the data access instruction may
optionally explicitly specify (e.g., through one or more fields
or a set of bits), or otherwise indicate (e.g., implicitly indi-
cate), a data size 114 associated with desired data 110 to be
looked up or otherwise accessed. The data size may specify or
indicate the size of the desired data. Examples of suitable data
sizes include, but are not limited to, 1-bit, 2-bits, 3-bits, 4-bits,
5-bits, 6-bits, 7-bits, 8-bits, 16-bits, 32-bits, 64-bits, and 128-
bits to name just a few examples. Notice that in some embodi-
ments, the data size may optionally be less than one 8-bit byte
(e.g., may be 1-bit, 2-bits, 3-bits, 4-bits, 5-bits, 6-bits, or
7-bits), it such precisions are desired for the particular imple-
mentation. The data size may be specified in different ways.
In some cases, one or more bits may have a particular value to
explicitly specify a number of bits, bytes, words, double-
words, or quadwords. For example, “01” may be used to
specify one byte. In other cases, one or more bits may be used
to provide a code (e.g., an arbitrary code following any
desired convention) to indicate one of several different data
sizes. For example, a two-bit code may have a value “00” to
indicate one 8-bit byte, “01” to indicate one 16-bit word, “10”
to indicate one 32-bit doubleword, or “11” to indicate one
64-bit quadword). Alternatively, according to a different
example convention, the two-bit code may have a value “00”
to indicate one 2-bit segment, “01” to indicate one 8-bit byte,
“10” to indicate one 16-bit doubleword, or “11” to indicate
one 64-bit quadword. Three or more bits may be used to
provide even more different size options. In some embodi-
ments, the data size may be specified through a field or one or
more bits of the instruction format. In other embodiments, the
data size may be provided by an immediate of the instruction.

US 9,207,880 B2

5

It is not required that the instruction explicitly specifies or
indicates the data size. In other embodiments, the data size
may be implicitly indicated by the instruction (e.g., a size may
be implicit to an opcode of the instruction). For example,
different instructions with different opcodes may optionally
be provided for different corresponding single data sizes
(e.g., a first instruction with a first opcode may be used for a
first data size (e.g., one 8-bit byte), a second instruction with
a second different opcode may be used for a second different
data size (e.g., one 16-bit word), and so on).

In the case of the data size being less than an 8-bit byte, one
possible way of address calculation is to shift the data address
by an appropriate number of bits. For example, in the case of
a 1-bit addressable memory, three extra bits may optionally
be used in the address. By way of example, to address an
eighth bit of byte 1an address of 1000 may be used, the ninth
bit in the memory may be addressed as 1001, and so on. In
some embodiments, the data access instruction may explicitly
specify (e.g., through one or more fields or a set of bits), or
otherwise indicate (e.g., implicitly indicate), a destination
storage location 116 where retrieved, obtained, or otherwise
accessed data 110 may be stored responsive to the data access
instruction. By way of example, the destination storage loca-
tion may be a processor register (e.g., a general-purpose reg-
ister or a packed data register), or other storage location.

Referring again to FIG. 1, the processor includes a decode
unit or decoder 104. The decode unit may receive and decode
instructions, including the data access instruction. The
decode unit may output one or more microinstructions,
micro-operations, micro-code entry points, decoded instruc-
tions or control signals, or other relatively lower-level instruc-
tions or control signals that reflect, represent, and/or are
derived from the data access instruction. The one or more
relatively lower-level instructions or control signals may
implement the relatively higher-level data access instruction
through one or more relatively lower-level (e.g., circuit-level
or hardware-level) operations. In some embodiments, the
decode unit may include one or more input structures (e.g.,
input port(s), input interconnect(s), an input interface, etc.) to
receive the instruction, an instruction recognition logic
coupled with the input structures to receive and recognize the
instruction, a decode logic coupled with the recognition logic
to receive and decode the instruction, and one or more output
structures (e.g., output port(s), output interconnect(s), an out-
put interface, etc.) coupled with the decode logic to output
one or more corresponding lower level instructions or control
signals. The recognition logic and the decode logic may be
implemented using various different mechanisms including,
but not limited to, microcode read only memories (ROMs),
look-up tables, hardware implementations, programmable
logic arrays (PLAs), and other mechanisms used to imple-
ment decode units known in the art.

In some embodiments, instead of the data access instruc-
tion being provided directly to the decode unit, an instruction
emulator, translator, morpher, interpreter, or other instruction
conversion module may optionally be used. Various different
types of instruction conversion modules are known in the arts
and may be implemented in software, hardware, firmware, or
a combination thereof. In some embodiments, the instruction
conversion module may be located outside the instruction
processing processor, such as, for example, on a separate die
and/or in a memory (e.g., as a static, dynamic, or runtime
instruction emulation module). By way of example, the
instruction conversion module may receive the data access
instruction, which may be of a first instruction set, and may
emulate, translate, morph, interpret, or otherwise convert the
data access instruction into one or more corresponding or

10

15

20

25

30

35

40

45

50

55

60

65

6

derived intermediate instructions or control signals, which
may be of a second different instruction set. The one or more
instructions or control signals of the second instruction set
may be provided to a decode unit that is operable to decode
instructions or control signals of the second instruction set.
The decode unit may decode the received one or more instruc-
tions or control signals of the second instruction set into one
or more lower-level instructions or control signals executable
by native hardware of the processor (e.g., one or more execu-
tion units).

Referring again to FIG. 1, the processor also includes the
on-die programmable architecturally-visible storage 108.
The on-die programmable architecturally-visible storage
may be used to store data. The data access instruction may be
performed to lookup or otherwise access desired data 110
from the on-die programmable architecturally-visible stor-
age. The on-die programmable architecturally-visible storage
is on-die and/or on-chip with other portions of the processor
(e.g., the execution unit). The on-die programmable architec-
turally-visible storage is programmable. For example, the
storage may include a type of data storage (e.g., circuitry
and/or a device) that is capable of having data stored therein,
or otherwise being programmed, after initial manufacture. In
some embodiments, a software programmer and/or software
may be able to program the on-die programmable storage, not
just the manufacturer and/or designer of the processor. That
is, the on-die programmable storage may be programmed
during processor runtime (e.g., while the processor is decod-
ing and executing instructions). In one example, the on-die
programmable storage may be programmed during boot. In
some embodiments, the on-die programmable storage may
include a type of data storage (e.g., circuitry and/or a device)
that is capable of being re-programmed multiple times (e.g.,
initial data can be stored thereon, new data can be stored
therein overwriting the initial data, and so on). The on-die
programmable architecturally-visible storage is architectur-
ally visible. For example, in some embodiments, a software
programmer and/or user-level software may be able to view
or access the architecturally-visible storage through execu-
tion of a user-level instruction of an instruction set of the
processor (e.g., the data access instruction). In some embodi-
ments, the on-die programmable architecturally-visible stor-
age may include a type of random-access memory (RAM).
For example, in some embodiments, static random-access
memory (SRAM) may be used. Alternatively, dynamic RAM
(DRAM), or non-volatile RAM (NVRAM) may optionally be
used. Furthermore, current or future substitutes for SRAM,
DRAM, and NVRAM may optionally be used instead. Also,
other types of memory suitable for implementing instruction
and/or data caches of processors known now, or developed in
the future, may also optionally be used. In some embodi-
ments, the on-die programmable storage may optionally have
more than two ports and/or more than two banks, which may
help to increase access throughput, although this is not
required. In some embodiments, the on-die programmable
architecturally-visible storage is part of a general-purpose
processor and is not part of a Field Programmable Gate Array
(FPGA).

Referring again to FIG. 1, the execution unit 106 is coupled
with the decode unit 104, the on-die programmable architec-
turally-visible storage 108, and the destination storage loca-
tion 116. The execution unit is operable in response to and/or
as a result of the data access instruction (e.g., in response to
one or more instructions or control signals decoded or other-
wise converted from the data access instruction) to lookup or
otherwise access data 110 in the on-die programmable stor-
age 108. For example, in some embodiments, the data access

US 9,207,880 B2

7

instruction may cause the processor to locate or identify a
particular data 110 that is indicated by the data address 112 of
the data access instruction. The data access instruction may
also cause the processor to retrieve, obtain, or otherwise
access an amount of the indicated data 110 equal to or at least
based on the data size 114 indicated by the data access
instruction. In some embodiments, the data access instruction
may also cause the processor to store the retrieved or other-
wise accessed data 110, which is associated with the data
address 112 and the data size 114, in a destination storage
location 116 indicated by the data access instruction.
Examples of suitable destination storage locations include,
but are not limited to, general-purpose registers of the pro-
cessor, packed data registers of the processor, and other stor-
age locations of the processor. Alternatively, memory loca-
tions or other destination storage locations may optionally be
used, if desired. The execution unit and/or the processor may
include specific or particular logic (e.g., transistors, inte-
grated circuitry, or other hardware potentially combined with
firmware (e.g., instructions stored in non-volatile memory)
and/or software) that is operable to perform the data access
instruction.

The on-die programmable architecturally-visible storage
108 and data access instruction 102 may offer various poten-
tial advantages. For one thing, the on-die programmable
architecturally-visible storage is not limited to only being
programmed by the designer and/or manufacturer of the pro-
cessor as was the case of the on-die ROM discussed in the
background section. Rather, for example, software program-
mer and/or software may program the on-die programmable
architecturally-visible storage with data. As a result, instead
of being limited to just those types of transcendental func-
tions selected by the processor designer and/or manufacturer
at the time of manufacture (e.g., generally the more prevalent
ones), the programmer and/or software may select the type of
transcendental function, the type of function with a limited
output range, or other type of function, or other data (e.g., a
datastructure having Fast Fourier Transform twiddle factors,
coefficients used in an algorithm, a user-defined logic truth
table, etc.) desired to be stored in the on-die programmable
architecturally-visible storage for the particular implementa-
tion. For example, if an arc-tangent, hyperbolic sine, or other
less commonly used transcendental function isn’t otherwise
available through an on-die ROM programmed by the pro-
cessor’s manufacturer, then the programmer and/or software
may program the on-die programmable architecturally vis-
ible storage with data/values for such a function. Moreover,
the on-die programmable storage may be programmed with
other types of data at the programmer’s discretion not just
transcendental functions. For example, it may be used as a
sort of scratch pad memory to program various different types
of functions, values, or data desired to be stored for the
particular implementation. That is, the programmer and/or
software may select what particular type of function is to be
stored in the on-die programmable architecturally-visible
storage. In cases where such additional transcendental func-
tions need to be evaluated, and especially in cases where the
evaluation of these functions is prevalent, this capability may
help to significantly improve performance. For example,
accessing values from the on-die storage typically has much
lower latencies than if the values were accessed from system
memory.

For another thing, the on-die programmable architectur-
ally-visible storage 108 is not limited to only being pro-
grammed to have values with accuracies and/or precisions
selected by the designer and/or manufacturer of the processor,
as was the case of the on-die ROM discussed in the back-

10

15

20

25

30

35

40

45

50

55

60

65

8

ground section. Rather, for example, a software programmer
and/or software may program the on-die programmable
architecturally-visible storage with values having a precision
and/or accuracy that are appropriate for the particular imple-
mentation. That is, instead of the precisions and/or accuracies
of the values being static or inflexible, as in the case of the
on-die ROM discussed in the background section, the on-die
programmable architecturally-visible storage may allow
flexible accuracies and/or precisions that may be pro-
grammed by the software programmer and/or software. In
some cases, this may allow a software programmer and/or the
software to obtain a low accuracy and/or low precision num-
ber quickly, which may not take much storage, instead of
having to determine a higher precision number more slowly.
For example, in various embodiments, each data may have
only 1-bit, 2-bits, 3-bits, 4-bits, 5-bits, 6-bits, 7-bits, 8-bits, or
some other relatively low number of bits desired for the
particular implementation. By way of example, such low
accuracy and/or low precision numbers may be suitable when
determining if the values are above or below a threshold, etc.
For example, a 1-bit or 2-bit value may be used to designate
whether a value of a transcendental function is above or below
athreshold, may be used to indicate if a particle in flight is to
turnright or left, etc. In some applications, such low precision
values may be sufficient for the intended use, and may allow
alarge number of such values to be stored in a relatively small
amount of on-die storage. In other embodiments, a relatively
high precision value, such as a 64-bit or 128-bit value may be
stored. In any event, the software and/or the programmer may
be allowed to decide what precision values to be stored in the
on-die programmable storage.

In addition, the on-die programmable architecturally-vis-
ible storage 108 generally allows greater control over what
data is stored therein than an ordinary instruction and/or data
cache commonly found in processors. For one thing, it may be
relatively more dedicated to a particular use and/or type of
data selected by a programmer and/or software. For example,
the on-die programmable architecturally-visible storage may
be dedicated to storing values for a particular user-selectable
function (e.g., a transcendental function). In contrast, a data
cache is generally not dedicated to any such particular user-
selectable use and/or type of data. Specifically, such a data
cache is generally not dedicated to storing values for one or
more transcendental or other functions. Rather, various other
types of data brought in from memory are typically stored in
the data cache irrespective of whether or not they are associ-
ated with the transcendental or other function. The data cache
also generally uses a cache data replacement mechanism
and/or a data eviction mechanism that is often based on an age
of data (e.g., according to a least recently use metric) and/or
based on modification of data to autonomously evict data
from the cache without substantial involvement of software.
For example, some caches use the well-known MESI proto-
col, or other similar protocols. In some embodiments, the
on-die programmable architecturally-visible storage does not
include such an autonomous cache data replacement mecha-
nism and/or data eviction mechanism. The dedicated on-die
programmable architecturally-visible storage may allow rela-
tively greater control of what data is stored therein and
remains therein. In some embodiments, specific instructions
may be included to add data to or remove data from the on-die
programmable storage and it may remain in there unless these
specific instructions are used, which is generally not the case
for a cache having a replacement policy. Conversely, what
type of data is stored in the ordinary data cache is generally
less deterministic and less easy to control. Data may be
evicted from the ordinary data cache by other types of datanot

US 9,207,880 B2

9

related to the one or more transcendental or other functions.
However, data generally would not be evicted from the on-die
programmable storage by data other than the one or more
transcendental or other functions or other type of data that the
programmer and/or software selected to be in the case. In
some embodiments, software and/or a programmer may
explicitly control what data is or is not in the on-die program-
mable storage. Moreover, in some embodiments, the on-die
programmable storage need not be coherent with any
memory (e.g., need not implement a coherency policy or
mechanism).

To avoid obscuring the description, a relatively simple
processor 100 has been shown and described. In other
embodiments, the processor may optionally include other
well-known processor components. Possible examples of
such components include, but are not limited to, an instruc-
tion fetch unit, instruction and data caches, second or higher
level caches, out-of-order execution logic, an instruction
scheduling unit, a register renaming unit, a retirement unit, a
bus interface unit, instruction and data translation lookaside
buffers, prefetch buffers, microinstruction queues, microin-
struction sequencers, other components included in proces-
sors, and various combinations thereof. Numerous different
combinations and configurations of such components are
suitable. Embodiments are not limited to any known combi-
nation or configuration. Moreover, embodiments may be
included in processors have multiple cores, logical proces-
sors, or execution engines at least one of which has a decode
unitand an execution unit to perform an embodiment ofa data
access instruction.

FIG. 2 is a block flow diagram of an embodiment of a
method 220 of performing an embodiment of a data access
instruction. In various embodiments, the method may be per-
formed by a processor, instruction processing apparatus, or
other digital logic device. In some embodiments, the opera-
tions and/or method of FIG. 2 may be performed by and/or
within the processor of FIG. 1. The components, features, and
specific optional details described herein for the processor of
FIG. 1, including the on-die programmable architecturally-
visible storage, also optionally apply to the operations and/or
method of FIG. 2. Alternatively, the operations and/or method
of FIG. 2 may be performed by and/or within a similar or
different processor or apparatus. Moreover, the processor of
FIG. 1 may perform operations and/or methods the same as,
similar to, or different than those of FIG. 2.

The method includes receiving the data access instruction,
at block 221. In various aspects, the data access instruction
may be received at a processor, an instruction processing
apparatus, or a portion thereof (e.g., an instruction fetch unit,
adecode unit, a bus interface unit, etc.). In various aspects, the
instruction may be received from an off-die source (e.g., from
memory, interconnect, etc.), or from an on-die source (e.g.,
from an instruction cache, instruction queue, etc.). In some
embodiments, the data access instruction may be a user-level
instruction of an instruction set of the processor. The data
access instruction may specify or otherwise indicate a data
address associated with or indicating data to be accessed. In
some embodiments, the data access instruction may specity
or otherwise indicate a data size associated with or pertaining
to the data to be accessed. The various ways of specifying or
indicating the data address and data size discussed elsewhere
herein are suitable.

At block 222, data may be stored in a destination storage
location (e.g., an architectural register or other storage loca-
tion of the processor) indicated by the data access instruction,
in response to and/or as a result of the data access instruction.
In some embodiments, the data stored in the destination stor-

25

30

40

45

55

10

age location may have been retrieved from an on-die pro-
grammable architecturally-visible storage ofthe processor. In
some embodiments, the data stored in the destination storage
location may have been retrieved from a location or portion of
the on-die programmable architecturally-visible storage that
is indicated by the data address indicated by the data access
instruction. In some embodiments, an amount of the data
stored in the destination storage location may be equal to or at
least based on a data size indicated by the data access instruc-
tion. Examples of suitable storage locations include, but are
not limited to, architectural registers of the processor (e.g.,
general-purpose registers, packed data registers, etc.). Alter-
natively, memory locations or other destination storage loca-
tions may optionally be used. In some embodiments, the
on-die programmable storage may optionally have any of the
characteristics described elsewhere herein for the on-die pro-
grammable storage.

The illustrated method involves architectural operations
(e.g., those generally visible from a software perspective). In
other embodiments, the method may optionally include one
or more microarchitectural operations. By way of example,
the instruction may be fetched, decoded, scheduled out-of-
order, an execution unit may perform microarchitectural
operations to implement the data access instruction, etc.

FIGS. 1-2 show and describe primarily instructions that
access a single data value from the on-die programmable
architecturally visible storage using a single corresponding
data address. However, other embodiments may access a
plurality of data items or values from a plurality of poten-
tially/optionally non-contiguous locations or data addresses
in the on-die programmable architecturally-visible storage.
For example, the instruction may indicate two or more data
addresses (e.g., two, four, eight, sixteen, etc.), each option-
ally/potentially being able to specify a non-contiguous loca-
tion in atable or other data structure. For example, the instruc-
tion may specify four data addresses for entries three,
seventeen, one hundred eighty, and ninety one in a table. In
response to the instruction, multiple data may be accessed or
retrieved from the corresponding data address and stored in a
destination storage location in response to the single instruc-
tion. In some embodiments, the instruction may have multiple
fields in the instruction format to specify the at least two data
addresses. In other embodiments, the instruction may indi-
cate a source operand (e.g., a register) having multiple data
addresses. For example, in some embodiments, the instruc-
tion may indicate a source packed data register or other source
packed data operand having a plurality of packed data ele-
ments that each include a data address. In some embodiments,
the instruction may indicate a packed data operand (e.g., a
packed data register) as a destination operand. Multiple
retrieved data items may be stored in multiple packed data
elements of the destination packed data operand. Such
embodiments may allow multiple data to be retrieved with a
single instruction. Moreover, this may also potentially help to
prepare the data items for subsequent packed data or vector
processing.

Different ways are contemplated for programming or stor-
ing data in an on-die programmable and architecturally-vis-
ible storage. In some embodiments, a processor may have in
its instruction set an instruction that when performed is oper-
able to cause the processor to store data into the on-die pro-
grammable and architecturally-visible storage.

FIG. 3 is ablock diagram of an embodiment of a processor
300 that is operable to perform an embodiment of a data store
instruction 330 to store data 310 in an on-die programmable
and architecturally-visible storage 308. The processor
includes a decode unit 304, an execution unit 306, and the

US 9,207,880 B2

11

on-die programmable architecturally-visible storage 308.
The processor, decode unit, execution unit, and on-die pro-
grammable architecturally-visible storage of FIG. 3 may
optionally have some or all of the characteristics of the cor-
respondingly named components of FIG. 1. To avoid obscur-
ing the description, the different and/or additional character-
istics of the components of FIG. 3 will primarily be described,
without repeating all the optionally common characteristics.

During operation, the processor 300 may receive the
embodiment of the data store instruction 330. For example,
the instruction may be received from an instruction fetch unit,
an instruction queue, or the like. The data store instruction
may represent a macroinstruction, assembly language
instruction, machine code instruction, or other instruction or
control signal of an instruction set of the processor. In some
embodiments, the data store instruction may represent a user-
level instruction that can be performed by user-level software
not just an operating system, hypervisor, or similar privileged
and/or supervisory software. In other embodiments, the data
store instruction may represent a system-level instruction that
is reserved for privileged and/or supervisory software, such
as, for example, an operating system, virtual machine moni-
tor, or the like.

In some embodiments, the data store instruction 330 may
explicitly specity (e.g., through one or more fields or a set of
bits), or otherwise indicate (e.g., implicitly indicate), a source
operand. The source operand may include the data 310 that is
to be stored into the on-die programmable architecturally-
visible storage 308. In some embodiments, the source oper-
and may be a memory location in system memory. In other
embodiments, the source operand may be an architectural
register of the processor (e.g., a general-purpose register,
packed data register, etc.). In some embodiments, the data
store instruction may explicitly specity, or otherwise indicate,
a data address 312 associated with the data 310 to be stored in
the on-die programmable and architecturally-visible storage
308. The data address 312 may indicate where the data 310 is
to be stored in the storage 308. In some embodiments, if there
are multiple on-die storage and/or multiple data structures,
the instruction may specify or otherwise indicate the particu-
lar on-die storage and/or data structure. The various ways
mentioned for the data access instruction are also suitable for
the data store instruction. In some embodiments, the data
store instruction may optionally explicitly specify or other-
wise indicate a data size 314 associated with the data 310 to be
stored into the on-die programmable and architecturally-vis-
ible storage 308. The data size 314 may indicate a size of the
data310 (e.g., whether it is 8-bits, 16-bits, 32-bits, or 64-bits).
The data address and data size may have the characteristics
previously described for the data access instruction.

The decode unit 304 may receive and decode the data store
instruction 330. The execution unit 306 may execute the
decoded data store instruction. In some embodiments, the
execution unit may be operable in response to and/or as a
result of the data store instruction (e.g., in response to one or
more instructions or control signals decoded or otherwise
converted from the data store instruction) to store the data 310
from the source operand indicated by the data store instruc-
tion 330 to the on-die programmable architecturally visible
storage 308. In some embodiments, the data 310 may be
stored to a location or portion of the storage 308 identified by,
or atleast based on, the data address 312 indicated by the data
store instruction. In some embodiments, a size or amount of
the data 310 stored from the source operand to the storage 308
may be equal to, or at least based on, the data size 314
indicated by the data store instruction. The execution unit
and/or the processor may include specific or particular logic

10

15

20

25

30

35

40

45

50

55

60

65

12

(e.g., transistors, integrated circuitry, or other hardware
potentially combined with firmware (e.g., instructions stored
in non-volatile memory) and/or software) that is operable to
perform the data store instruction.

The on-die programmable architecturally-visible storage
308 may have any of the characteristics described elsewhere
herein (e.g., any of the characteristics described for the stor-
age 108 of FIG. 1). For example, the storage 308 may include
a type of data storage (e.g., circuitry and/or a device) that is
capable of being programmed (e.g., having data stored
therein) after initial manufacture and/or while the processor is
running a software program. In some embodiments, a soft-
ware programmer and/or software may be able to program the
on-die programmable storage 308, not just the manufacturer
and/or designer of the processor. In some embodiments, the
on-die programmable storage 308 may include a type of data
storage (e.g., circuitry and/or a device) that is capable of being
re-programmed multiple or many times (e.g., potentially each
time the processor is turned on).

Advantageously, the on-die programmable architecturally-
visible storage 308 may be programmed with data during
processor runtime, by performing a data store instruction
(e.g., auser-level data store instruction). The on-die program-
mable architecturally-visible storage may be used to store
data of a type and having characteristics (e.g., data size,
accuracy, precision, etc.) selected by a programmer and/or
software instead of just a designer and/or manufacturer of the
processor. This may allow the programmer and/or software to
store data of a type, size, accuracy, and precision, which is
desired for the particular implementation.

To further illustrate certain concepts, consider one non-
limiting example of a possible use of the on-die program-
mable architecturally-visible storage 308. Initially, a data-
structure may be created in system memory. Examples of
suitable datastructures include, but are not limited to, tables,
arrays, lists, and other similar datastructures known in the
arts. The datastructure may include an ordered arrangement
of different data values. The scope of the invention is not
limited to any known type of data. However, in various
examples the data may be values of a transcendental or other
function, coefficients of an algorithm (e.g., a Fast Fourier
Transform algorithm), values of a user-defined logic truth
table, or the like. As previously mentioned, accessing data
from such a datastructure in system memory may tend to have
relatively large latencies, as compared to if the data were
instead accessed from an on-die storage location. For
example, the time needed to access data from memory may
take an order of magnitude or more time that would be needed
to access the data from an on-die storage location. To help
improve performance, the data from the datastructure may be
loaded, moved, or otherwise stored from the system memory
to the on-die programmable architecturally-visible storage.
In some embodiments, multiple data store instructions (e.g.,
similar to data store instruction 330) may be performed to
store the data from the datastructure in the system memory
piece-by-piece to the on-die programmable architecturally-
visible storage. For example, each data store instruction may
potentially store a single data value having a size equal to the
data size from the system memory to the on-die program-
mable architectural-visible storage. That s, a software-driven
approach may be used in which software and/or a program-
mer is responsible for manually or explicitly moving the
datastructure from the system memory to the on-die program-
mable architecturally-visible storage. One possible advan-
tage of such an approach is that the programmer and/or the
software are able to know relatively deterministically or pre-
cisely what data is stored in the on-die programmable archi-

US 9,207,880 B2

13

tecturally-visible storage. Additionally, it is possible to know
that the latency of accessing the data would be that of the
on-die programmable architecturally-visible storage not that
of system memory. However, one potential drawback with
such an approach is the additional effort of explicitly or
manually transferring the data.

FIG. 4 is a block diagram of an embodiment of a system
440 having an automated data transfer controller 442 to trans-
fer data from system memory 444 to an on-die programmable
architecturally-visible storage location 408. The system
includes a processor 400, the automated data transfer control-
ler 442 (e.g., a direct memory access (DMA) controller), and
the system memory 444. The processor has a logical proces-
sor 446, such as, for example, a core, hardware thread, or
other logical processor capable of maintaining an architec-
tural state. The processor also has a control register 448 and
an on-die programmable architecturally-visible storage 408.
The on-die programmable architecturally-visible storage
may be similar to, or the same as, those mentioned elsewhere
herein.

Initially, the logical processor 446 may initiate an auto-
mated data transfer (e.g., a DMA transfer). For example, the
logical processor may store information to control the auto-
mated data transfer in the control register 448. By way of
example, the logical processor may store a start of data to be
transferred (e.g., a source address in the memory) and a size
of the data to be transferred (e.g., a number of 8-bit bytes,
16-bitwords, 32-bit doublewords, or 64-bit quadwords) in the
control register. As an example, the logical processor may
store a start of a datastructure 450 stored in the memory and
a size of the datastructure. In some cases, the logical proces-
sor may also signal the memory and the automated data
transfer controller about the data transfer.

Once the data transfer operation has been initiated, the
automated data transfer controller 442 may begin to transfer
data from the memory to the on-die programmable and archi-
tecturally-visible storage using the information in the control
register. In some embodiments, the automated data transfer
controller may represent a direct memory access (DMA)
controller and/or a data transfer controller operable to transfer
data without involvement of a central processing unit (CPU).
For example, the automated data transfer controller may
autonomously store the data of the datastructure piece-by-
piece until all of the specified data has been stored in the
on-die programmable architecturally-visible storage.

Advantageously, by using such an approach the program-
mer and/or the software does not need to manually or explic-
itly transfer the data (e.g., through multiple data store instruc-
tions). Further, the programmer and/or the software are able
to know relatively well what data is stored in the on-die
programmable architecturally-visible storage. It is also
known that the latencies for accessing such data should be
those of the on-die programmable and architecturally-visible
storage not those of system memory.

In other embodiments, yet another way to program the
on-die programmable storage is by memory mapped input/
output (I/O). The programmer may first set up an I/O region
that corresponds to the on-die storage, and then use I/O
instructions (e.g., an out instruction) to program the memory.

In some embodiments, user-level software may be respon-
sible for storing data in the on-die programmable storage. In
such embodiments, the user-level software may also be
responsible for handling contents of the on-die program-
mable storage during context switches. In one aspect, during
a context switch, the contents of the on-die programmable
storage may be flushed. Subsequently, the contents may be
reloaded to the on-die programmable storage when the con-

20

30

40

45

55

14

text is swapped back in. In other embodiments, the context
switch may store the contents of the on-die programmable
storage to a user stack. In other embodiments, instead of the
on-die programmable storage being programmed by user-
level software at run time, the on-die programmable storage
may be programmed through system firmware (e.g., during
boot). The contents of the on-die programmable storage may
provide a fixed context for all programs and contexts that run
on the machine. In such embodiments, the contents of the
on-die programmable storage do not need to be flushed or
switched out on context switches, but may instead be kept in
the on-die programmable storage and used, if desired, by all
such contexts. Also, the costs of programming the on-die
programmable storage only need to be incurred once at star-
tup of the machine.

In other embodiments, the on-die programmable storage
may represent a dedicated cache structure. When the data
lookup instruction is performed, it may check the dedicated
cache structure. If the desired data is not in the dedicated
cache structure, then the desired data may be retrieved from
main memory on-demand. In some embodiments, a relatively
small sized cache line size may be brought in, such as, for
example, no more than eight bytes, no more than four bytes,
etc. In many conventional caches, much larger cache lines are
often brought in, such as, for example, 64-bytes. The smaller
cache line sizes may help to reduce the amount of unneeded
data in the dedicated cache structure. The data may be stored
in the cache. Subsequent accesses may find the same data in
the cache and not need to go to memory. However, other data
may also potentially evict data from this dedicated cache
structure. It may not be known in advance whether or not
desired data will be in this dedicated cache structure. If the
data is in this dedicated cache structure, then relatively low
data access latencies may be observed. Conversely, if the data
is not in this dedicated cache structure, then relatively high
data access latencies may be observed. That is, the program-
mer and/or software has less control and less knowledge of
whether or not data will be in the cache and the latencies of
accessing such data. However, this approach has an advan-
tage that explicit programming to transfer data into the cache
is not needed. In some embodiments, the cache may option-
ally be multi-ported and/or multi-banked to help provide
additional access bandwidth.

FIG. 5 is a block diagram of an embodiment of a model
specific register (MSR) 552 that is operable to store informa-
tion about an on-die programmable and architecturally-vis-
ible storage. The MSR represents an example embodiment of
a control register. In other embodiments other control regis-
ters may be used instead. As shown, in some embodiments,
the MSR may store a starting address 554 of a set of data (e.g.,
a datastructure) stored in the on-die programmable and archi-
tecturally-visible storage. In some embodiments, the MSR
may store a size and/or extent 556 of the set of data (e.g., the
datastructure) stored in the on-die programmable and archi-
tecturally-visible storage. The size and/or extent may also be
expressed as an end address of the set of data. The size and/or
extent may be used to determine whether an attempted access
is beyond the last bit of the on-die programmable storage.
Different possible ways of handling such an event are con-
templated. In some cases this may cause a fault or other
exceptional condition. In other cases, the attempted access
may optionally be ignored, wrapped around to the beginning
of the data structure, or handled otherwise.

In some embodiments, a programmer and/or software may
use one or more user-level instructions of an instruction set of
aprocessor to store the starting address and/or the extent/size
in the MSR. For example, the Intel Architecture includes a

US 9,207,880 B2

15

write model specific register (WRMSR) instruction that is
operable to write or store data in the MSR. In some embodi-
ments, the programmer and/or the software may use one or
more user-level instructions of an instruction set of a proces-
sor to read the starting address and/or the extent/size from the
MSR. For example, the Intel Architecture includes a read
model specific register (RDMSR) instruction that is operable
to load or read data from the MSR. It is to be appreciated that
storing the size and/or other information in the MSR is just
one illustrative example. In other embodiments, such infor-
mation about the on-die programmable architecturally vis-
ible-storage may optionally be stored in a similar way to other
processor information (e.g., CPUID type of information) and
accessed in a similar way (e.g., with a CPUID instruction).

FIG. 6A is a block diagram of an embodiment of a suitable
instruction format 602 for a data access instruction (e.g., data
access instruction 102). The instruction format includes an
operation code or opcode 660. The opcode may represent a
plurality of bits or one or more fields that are operable to
identify the instruction and/or the operation to be performed
(e.g., a data access operation from an on-die programmable
architecturally-visible storage). The instruction format also
includes a destination specifier 662, which may include bits
or one or more fields to specify an address of a processor
register or other destination storage location. Alternatively, in
another embodiment, the destination storage location may
optionally be implicit to the instruction, instead of being
explicitly specified. The instruction format also includes a
data address specifier 664, which may include bits or one or
more fields to specify a data address, or to specify a register
(e.g., a general-purpose register) storing the data address. In
some embodiments, the data access instruction may option-
ally indicate a source packed data register having a plurality
of packed potentially non-contiguous data addresses. Alter-
natively, in another embodiment, a register storing the data
address (or optionally data addresses) may optionally be
implicitly indicated by the instruction, instead of being
explicitly specified. In some embodiments, there may option-
ally be multiple on-die programmable architecturally-visible
storage and/or multiple tables or other data structures, and the
instruction may be able to indicate a particular on-die storage
and/or data structure (e.g., have a field to specity it or have it
be implied or implicit to the opcode/instruction). The instruc-
tion format also includes a data size specifier 665, which may
include bits or one or more fields to specify a data size.
Alternatively, in another embodiment, the data size may
optionally be implicitly indicated by the instruction. For
example, the opcode of the instruction may correspond to a
particular fixed data size.

FIG. 6B is a block diagram of an embodiment of a suitable
instruction format 630 for a data store instruction (e.g., data
store instruction 330). The instruction format includes an
operation code or opcode 661. The opcode may represent a
plurality of bits or one or more fields that are operable to
identify the instruction and/or the operation to be performed
(e.g., a data store operation to store data to an on-die program-
mable architecturally-visible storage). The instruction format
also includes a source specifier 668, which may include bits
or one or more fields to specify an address of a processor
register, a memory location, or other source storage location
having the data. Alternatively, in another embodiment, the
source storage location may optionally be implicit to the
instruction, instead of being explicitly specified. The instruc-
tion format also includes a data address specifier 664, which
may include bits or one or more fields to specify a data
address, or to specify a register (e.g., a general-purpose reg-
ister) storing the data address. Alternatively, in another

10

15

20

25

30

35

40

45

50

55

60

65

16

embodiment, a register storing the data address may option-
ally be implicitly indicated by the instruction, instead of being
explicitly specified. In some embodiments, there may option-
ally be multiple on-die programmable architecturally-visible
storage and/or multiple data structures and the instruction
may be able to indicate the appropriate on-die storage and/or
data structure either explicitly or implicitly. The instruction
format also includes a data size specifier 665, which may
include bits or one or more fields to specify a data size.
Alternatively, in another embodiment, the data size may
optionally be implicitly indicated by the instruction. For
example, the opcode of the instruction may correspond to a
particular fixed data size.

The instruction formats of FIGS. 6A/B are illustrative
examples but are not required. Alternate embodiments may
include a subset of the mentioned fields, may add additional
fields, may overlap certain fields, and may rearrange or reor-
der the fields. Further, the fields need not include contiguous
sequences of bits, but rather may be composed of non-con-
tiguous or separated bits.

Components, features, and details described for any of
FIGS. 3-6 may also optionally be used in any of FIGS. 1-2,
and components, features, and details described for any of
FIGS. 5-6 may also optionally be used in FIG. 3. Moreover,
components, features, and details described herein for any of
the apparatus described herein may also optionally be used in
and/or apply to any of the methods described herein, which in
embodiments may be performed by and/or with such appa-
ratus. Any ofthe processors described herein may be included
in any of the computer systems or other systems disclosed
herein.

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing. Implementations of different pro-
cessors may include: 1) a CPU including one or more general
purpose in-order cores intended for general-purpose comput-
ing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coproces-
sor including one or more special purpose cores intended
primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system archi-
tectures, which may include: 1) the coprocessor on a separate
chip from the CPU; 2) the coprocessor on a separate die in the
same package as a CPU; 3) the coprocessor on the same die as
a CPU (in which case, such a coprocessor is sometimes
referred to as special purpose logic, such as integrated graph-
ics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same
die the described CPU (sometimes referred to as the applica-
tion core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.
Exemplary Core Architectures
In-order and Out-of-order Core Block Diagram

FIG. 7A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 7B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and

US 9,207,880 B2

17

an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
7A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.

In FIG. 7A, a processor pipeline 700 includes a fetch stage
702, a length decode stage 704, a decode stage 706, an allo-
cation stage 708, a renaming stage 710, a scheduling (also
known as a dispatch or issue) stage 712, a register read/
memory read stage 714, an execute stage 716, a write back/
memory write stage 718, an exception handling stage 722,
and a commit stage 724.

FIG. 7B shows processor core 790 including a front end
unit 730 coupled to an execution engine unit 750, and both are
coupled to amemory unit 770. The core 790 may be a reduced
instruction set computing (RISC) core, a complex instruction
set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 790 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 730 includes a branch prediction unit
732 coupled to an instruction cache unit 734, which is
coupled to an instruction translation lookaside buffer (TLB)
736, which is coupled to an instruction fetch unit 738, which
is coupled to a decode unit 740. The decode unit 740 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decode unit 740
may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable
logic arrays (PL.As), microcode read only memories (ROMs),
etc. In one embodiment, the core 790 includes a microcode
ROM or other medium that stores microcode for certain mac-
roinstructions (e.g., in decode unit 740 or otherwise within
the front end unit 730). The decode unit 740 is coupled to a
rename/allocator unit 752 in the execution engine unit 750.

The execution engine unit 750 includes the rename/alloca-
tor unit 752 coupled to a retirement unit 754 and a set of one
or more scheduler unit(s) 756. The scheduler unit(s) 756
represents any number of different schedulers, including res-
ervations stations, central instruction window, etc. The sched-
uler unit(s) 756 is coupled to the physical register file(s)
unit(s) 758. Each of the physical register file(s) units 758
represents one or more physical register files, different ones
of'which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register
file(s) unit 758 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units
may provide architectural vector registers, vector mask reg-
isters, and general purpose registers. The physical register
file(s) unit(s) 758 is overlapped by the retirement unit 754 to
illustrate various ways in which register renaming and out-
of-order execution may be implemented (e.g., using a reorder
buffer(s) and a retirement register file(s); using a future file(s),
a history buffer(s), and a retirement register file(s); using a

10

15

20

25

30

35

40

45

50

55

60

65

18

register maps and a pool of registers; etc.). The retirement unit
754 and the physical register file(s) unit(s) 758 are coupled to
the execution cluster(s) 760. The execution cluster(s) 760
includes a set of one or more execution units 762 and a set of
one or more memory access units 764. The execution units
762 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 756,
physical register file(s) unit(s) 758, and execution cluster(s)
760 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 764). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 764 is coupled to the
memory unit 770, which includes a data TLB unit 772
coupled to a data cache unit 774 coupled to a level 2 (L2)
cache unit 776. In one exemplary embodiment, the memory
access units 764 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 772 in the memory unit 770. The instruction cache unit
734 is further coupled to a level 2 (L.2) cache unit 776 in the
memory unit 770. The L2 cache unit 776 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 700 as follows: 1) the instruction fetch 738 performs
the fetch and length decoding stages 702 and 704; 2) the
decode unit 740 performs the decode stage 706; 3) the
rename/allocator unit 752 performs the allocation stage 708
and renaming stage 710; 4) the scheduler unit(s) 756 per-
forms the schedule stage 712; 5) the physical register file(s)
unit(s) 758 and the memory unit 770 perform the register
read/memory read stage 714; the execution cluster 760 per-
form the execute stage 716; 6) the memory unit 770 and the
physical register file(s) unit(s) 758 perform the write back/
memory write stage 718; 7) various units may be involved in
the exception handling stage 722; and 8) the retirement unit
754 and the physical register file(s) unit(s) 758 perform the
commit stage 724.

The core 790 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
790 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX?2), thereby allowing the opera-
tions used by many multimedia applications to be performed
using packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time

US 9,207,880 B2

19

sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 734/774 and a shared .2
cache unit 776, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

Specific Exemplary in-Order Core Architecture

FIGS. 8A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks com-
municate through a high-bandwidth interconnect network
(e.g., aring network) with some fixed function logic, memory
1/0 interfaces, and other necessary /O logic, depending on
the application.

FIG. 8A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
802 and with its local subset of the Level 2 (1.2) cache 804,
according to embodiments of the invention. In one embodi-
ment, an instruction decoder 800 supports the x86 instruction
set with a packed data instruction set extension. An [.1 cache
806 allows low-latency accesses to cache memory into the
scalar and vector units. While in one embodiment (to simplify
the design), a scalar unit 808 and a vector unit 810 use sepa-
rate register sets (respectively, scalar registers 812 and vector
registers 814) and data transferred between them is written to
memory and then read back in from a level 1 (1) cache 806,
alternative embodiments of the invention may use a different
approach (e.g., use a single register set or include a commu-
nication path that allow data to be transferred between the two
register files without being written and read back).

The local subset of the .2 cache 804 is part of a global .2
cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path to
its own local subset of the [.2 cache 804. Data read by a
processor core is stored in its [.2 cache subset 804 and can be
accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own [.2 cache subset 804 and is
flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-
directional to allow agents such as processor cores, [.2 caches
and other logic blocks to communicate with each other within
the chip. Each ring data-path is 1012-bits wide per direction.

FIG. 8B is an expanded view of part of the processor core
in FIG. 8A according to embodiments of the invention. FIG.
8B includes an L1 data cache 806A part of the L1 cache 804,
as well as more detail regarding the vector unit 810 and the
vector registers 814. Specifically, the vector unit 810 is a
16-wide vector processing unit (VPU) (see the 16-wide ALU
828), which executes one or more of integer, single-precision
float, and double-precision float instructions. The VPU sup-
ports swizzling the register inputs with swizzle unit 820,
numeric conversion with numeric convert units 822A-B, and

10

15

20

25

30

35

40

45

50

55

60

65

20

replication with replication unit 824 on the memory input.
Write mask registers 826 allow predicating resulting vector
writes.

Processor with Integrated Memory Controller and Graphics

FIG. 9 is a block diagram of a processor 900 that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention. The solid lined boxes in FIG. 9 illus-
trate a processor 900 with a single core 902A, a system agent
910, a set of one or more bus controller units 916, while the
optional addition of the dashed lined boxes illustrates an
alternative processor 900 with multiple cores 902A-N, asetof
one or more integrated memory controller unit(s) 914 in the
system agent unit 910, and special purpose logic 908.

Thus, different implementations of the processor 900 may
include: 1) a CPU with the special purpose logic 908 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
902A-N being one or more general purpose cores (e.g., gen-
eral purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 902A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 902A-N being a
large number of general purpose in-order cores. Thus, the
processor 900 may be a general-purpose processor, coproces-
sor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 900 may be a part of and/or may be
implemented on one or more substrates using any of a number
of process technologies, such as, for example, BICMOS,
CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
906, and external memory (not shown) coupled to the set of
integrated memory controller units 914. The set of shared
cache units 906 may include one or more mid-level caches,
such as level 2 (L.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 912 interconnects the integrated graphics logic 908, the
set of shared cache units 906, and the system agent unit
910/integrated memory controller unit(s) 914, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 906 and
cores 902-A-N.

In some embodiments, one or more of the cores 902A-N
are capable of multithreading. The system agent 910 includes
those components coordinating and operating cores 902A-N.
The system agent unit 910 may include for example a power
control unit (PCU) and a display unit. The PCU may be or
include logic and components needed for regulating the
power state of the cores 902A-N and the integrated graphics
logic 908. The display unit is for driving one or more exter-
nally connected displays.

The cores 902A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 902A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.

US 9,207,880 B2

21

Exemplary Computer Architectures

FIGS. 10-13 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 10, shown is a block diagram of a
system 1000 in accordance with one embodiment of the
present invention. The system 1000 may include one or more
processors 1010, 1015, which are coupled to a controller hub
1020. In one embodiment the controller hub 1020 includes a
graphics memory controller hub (GMCH) 1090 and an Input/
Output Hub (IOH) 1050 (which may be on separate chips);
the GMCH 1090 includes memory and graphics controllers to
which are coupled memory 1040 and a coprocessor 1045; the
IOH 1050 is couples input/output (/O) devices 1060 to the
GMCH 1090. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 1040 and the coprocessor
1045 are coupled directly to the processor 1010, and the
controller hub 1020 in a single chip with the IOH 1050.

The optional nature of additional processors 1015 is
denoted in FIG. 10 with broken lines. Each processor 1010,
1015 may include one or more of the processing cores
described herein and may be some version of the processor
900.

The memory 1040 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 1020 communicates with the processor(s)
1010, 1015 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 1095.

In one embodiment, the coprocessor 1045 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor, com-
pression engine, graphics processor, GPGPU, embedded pro-
cessor, or the like. In one embodiment, controller hub 1020
may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 1010, 1015 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 1010 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 1010 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 1045. Accordingly, the processor
1010 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 1045. Coprocessor(s)
1045 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 11, shown is a block diagram of a
first more specific exemplary system 1100 in accordance with
anembodiment of the present invention. As shown in FIG. 11,
multiprocessor system 1100 is a point-to-point interconnect
system, and includes a first processor 1170 and a second
processor 1180 coupled via a point-to-point interconnect

10

15

20

25

30

35

40

45

50

55

60

65

22

1150. Each of processors 1170 and 1180 may be some version
of the processor 900. In one embodiment of the invention,
processors 1170 and 1180 are respectively processors 1010
and 1015, while coprocessor 1138 is coprocessor 1045. In
another embodiment, processors 1170 and 1180 are respec-
tively processor 1010 coprocessor 1045.

Processors 1170 and 1180 are shown including integrated
memory controller (IMC) units 1172 and 1182, respectively.
Processor 1170 also includes as part of its bus controller units
point-to-point (P-P) interfaces 1176 and 1178; similarly, sec-
ond processor 1180 includes P-P interfaces 1186 and 1188.
Processors 1170, 1180 may exchange information via a point-
to-point (P-P) interface 1150 using P-P interface circuits
1178, 1188. As shown in FIG. 11, IMCs 1172 and 1182
couple the processors to respective memories, namely a
memory 1132 and a memory 1134, which may be portions of
main memory locally attached to the respective processors.

Processors 1170, 1180 may each exchange information
with a chipset 1190 via individual P-P interfaces 1152, 1154
using point to point interface circuits 1176, 1194, 1186, 1198.
Chipset 1190 may optionally exchange information with the
coprocessor 1138 via a high-performance interface 1139. In
one embodiment, the coprocessor 1138 is a special-purpose
processor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or
the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1190 may be coupled to a first bus 1116 via an
interface 1196. In one embodiment, first bus 1116 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 11, various /O devices 1114 may be
coupled to first bus 1116, along with a bus bridge 1118 which
couples first bus 1116 to a second bus 1120. In one embodi-
ment, one or more additional processor(s) 1115, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 1116. In
one embodiment, second bus 1120 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
1120 including, for example, a keyboard and/or mouse 1122,
communication devices 1127 and a storage unit 1128 such as
a disk drive or other mass storage device which may include
instructions/code and data 1130, in one embodiment. Further,
an audio I/0 1124 may be coupled to the second bus 1120.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 11, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 12, shown is a block diagram of a
second more specific exemplary system 1200 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 11 and 12 bear like reference numerals, and certain
aspects of FIG. 11 have been omitted from FIG. 12 in order to
avoid obscuring other aspects of FIG. 12.

FIG. 12 illustrates that the processors 1170, 1180 may
include integrated memory and I/0O control logic (“CL”) 1172
and 1182, respectively. Thus, the CL 1172, 1182 include
integrated memory controller units and include I/O control
logic. FIG. 12 illustrates that not only are the memories 1132,

US 9,207,880 B2

23
1134 coupled to the CL 1172, 1182, but also that I/O devices
1214 are also coupled to the control logic 1172, 1182. Legacy
1/0 devices 1215 are coupled to the chipset 1190.

Referring now to FIG. 13, shown is a block diagram of a
SoC 1300 in accordance with an embodiment of the present
invention. Similar elements in FIG. 9 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. InFIG. 13, an interconnect unit(s) 1302
is coupled to: an application processor 1310 which includes a
set of one or more cores 202A-N and shared cache unit(s)
906; a system agent unit 910; a bus controller unit(s) 916; an
integrated memory controller unit(s) 914; a set or one or more
coprocessors 1320 which may include integrated graphics
logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
1330; a direct memory access (DMA) unit 1332; and a display
unit 1340 for coupling to one or more external displays. Inone
embodiment, the coprocessor(s) 1320 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 1130 illustrated in FIG. 11,
may be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash

10

15

20

25

30

35

40

45

50

55

60

65

24

memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (Including Binary Translation, Code Morphing,
Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 14 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 14 shows a program in
a high level language 1402 may be compiled using an x86
compiler 1404 to generate x86 binary code 1406 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 1416. The processor with at least one x86 instruc-
tion set core 1416 represents any processor that can perform
substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in
order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 1404 represents a compiler that is operable to gen-
erate x86 binary code 1406 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 1416.
Similarly, FIG. 14 shows the program in the high level lan-
guage 1402 may be compiled using an alternative instruction
set compiler 1408 to generate alternative instruction set
binary code 1410 that may be natively executed by a proces-
sor without at least one x86 instruction set core 1414 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1412 is used to convert the
x86 binary code 1406 into code that may be natively executed
by the processor without an x86 instruction set core 1414.
This converted code is not likely to be the same as the alter-
native instruction set binary code 1410 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 1412 represents software,
firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a proces-

US 9,207,880 B2

25

sor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 1406.

In the description and claims, the terms “coupled” and/or
“connected,” along with their derivatives, may have be used.
These terms are not intended as synonyms for each other.
Rather, in embodiments, “connected” may be used to indicate
that two or more elements are in direct physical and/or elec-
trical contact with each other. “Coupled” may mean that two
or more elements are in direct physical and/or electrical con-
tact with each other. However, “coupled” may also mean that
two or more elements are not in direct contact with each other,
but yet still co-operate or interact with each other. For
example, an execution unit may be coupled with a register
and/or a decode unit through one or more intervening com-
ponents. In the figures, arrows are used to show connections
and couplings.

In the description and/or claims, the terms “logic,” “unit,”
“module,” or “component,” may have been used. Each of
these terms may be used to refer to hardware, firmware,
software, or various combinations thereof. In example
embodiments, each of these terms may refer to integrated
circuitry, application specific integrated circuits, analog cir-
cuits, digital circuits, programmed logic devices, memory
devices including instructions, and the like, and various com-
binations thereof. In some embodiments, these may include at
least some hardware (e.g., transistors, gates, other circuitry
components, etc.).

The term “and/or” may have been used. As used herein, the
term “and/or” means one or the other or both (e.g., A and/or B
means A or B or both A and B).

In the description above, specific details have been set forth
in order to provide a thorough understanding of the embodi-
ments. However, other embodiments may be practiced with-
out some of these specific details. The scope of the invention
is not to be determined by the specific examples provided
above, but only by the claims below. In other instances, well-
known circuits, structures, devices, and operations have been
shown in block diagram form and/or without detail in order to
avoid obscuring the understanding of the description. Where
considered appropriate, reference numerals, or terminal por-
tions of reference numerals, have been repeated among the
figures to indicate corresponding or analogous elements,
which may optionally have similar or the same characteris-
tics, unless specified or clearly apparent otherwise. In some
cases, where multiple components have been shown and
described, they may instead optionally be integrated together
as a single component. In other cases, where a single compo-
nent has been shown and described, it may optionally be
separated into two or more components.

Various operations and methods have been described.
Some of the methods have been described in a relatively basic
form in the flow diagrams, but operations may optionally be
added to and/or removed from the methods. In addition, while
the flow diagrams show a particular order of the operations
according to example embodiments, that particular order is
exemplary. Alternate embodiments may optionally perform
the operations in different order, combine certain operations,
overlap certain operations, etc.

Certain operations may be performed by hardware compo-
nents, or may be embodied in machine-executable or circuit-
executable instructions, that may be used to cause and/or
result in a machine, circuit, or hardware component (e.g., a
processor, potion of a processor, circuit, etc.) programmed
with the instructions performing the operations. The opera-
tions may also optionally be performed by a combination of
hardware and software. A processor, machine, circuit, or

10

15

20

25

30

35

40

45

50

55

60

65

26

hardware may include specific or particular circuitry or other
logic (e.g., hardware potentially combined with firmware
and/or software) is operable to execute and/or process the
instruction and store a result in response to the instruction.

Some embodiments include an article of manufacture (e.g.,
a computer program product) that includes a machine-read-
able medium. The medium may include a mechanism that
provides, for example stores, information in a form that is
readable by the machine. The machine-readable medium may
provide, or have stored thereon, an instruction or sequence of
instructions, that if and/or when executed by a machine are
operable to cause the machine to perform and/or result in the
machine performing one or operations, methods, or tech-
niques disclosed herein. The machine-readable medium may
provide, for example store, one or more of the embodiments
of the instructions disclosed herein.

In some embodiments, the machine-readable medium may
include a tangible and/or non-transitory machine-readable
storage medium. For example, the tangible and/or non-tran-
sitory machine-readable storage medium may include a
floppy diskette, an optical storage medium, an optical disk, an
optical data storage device, a CD-ROM, a magnetic disk, a
magneto-optical disk, a read only memory (ROM), a pro-
grammable ROM (PROM), an erasable-and-programmable
ROM (EPROM), an electrically-erasable-and-programmable
ROM (EEPROM), a random access memory (RAM), a static-
RAM (SRAM), a dynamic-RAM (DRAM), a Flash memory,
a phase-change memory, a phase-change data storage mate-
rial, a non-volatile memory, a non-volatile data storage
device, a non-transitory memory, a non-transitory data stor-
age device, or the like. The non-transitory machine-readable
storage medium does not consist of a transitory propagated
signal.

Examples of suitable machines include, but are not limited
to, a general-purpose processor, a special-purpose processor,
an instruction processing apparatus, a digital logic circuit, an
integrated circuit, or the like. Still other examples of suitable
machines include a computing device or other electronic
device that includes a processor, instruction processing appa-
ratus, digital logic circuit, or integrated circuit. Examples of
such computing devices and electronic devices include, but
are not limited to, desktop computers, laptop computers,
notebook computers, tablet computers, netbooks, smart-
phones, cellular phones, servers, network devices (e.g., rout-
ers and switches), Mobile Internet devices (MIDs), media
players, smart televisions, nettops, set-top boxes, and video
game controllers.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” “one or more embodiments,”
“some embodiments,” for example, indicates that a particular
feature may be included in the practice of the invention but is
not necessarily required to be. Similarly, in the description
various features are sometimes grouped together in a single
embodiment, Figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding of
various inventive aspects. This method of disclosure, how-
ever, is not to be interpreted as reflecting an intention that the
invention requires more features than are expressly recited in
each claim. Rather, as the following claims reflect, inventive
aspects lie in less than all features of a single disclosed
embodiment. Thus, the claims following the Detailed
Description are hereby expressly incorporated into this
Detailed Description, with each claim standing on its own as
a separate embodiment of the invention.

2

US 9,207,880 B2

27

Example Embodiments

The following examples pertain to further embodiments.
Specifics in the examples may be used anywhere in one or
more embodiments.

Example 1 is a processor or other apparatus that includes an
on-die programmable architecturally-visible storage. The
processor or apparatus also includes a decode unit to receive
adata access instruction of an instruction set of the processor.
The data access instruction is to indicate a data address that is
to be associated with data to be stored in the on-die program-
mable architecturally-visible storage, to indicate a data size
associated with the data to be stored in the on-die program-
mable architecturally-visible storage, and to indicate a desti-
nation storage location of the processor. An execution unit of
the processor or apparatus is coupled with the decode unit and
the on-die programmable architecturally-visible storage. The
execution unit is on-die with the on-die programmable archi-
tecturally-visible storage. The execution unit is operable, in
response to the data access instruction, to store the data,
which is associated with the data address and the data size, in
the destination storage location that is to be indicated by the
instruction.

Example 2 includes the processor of Example 1 and
optionally in which the decode unit is to decode the data
access instruction which is a user-level instruction.

Example 3 includes the processor of any preceding
example and optionally in which the on-die programmable
architecturally-visible storage includes a type of storage that
data can be stored in after manufacture of the processor.

Example 4 includes the processor of any preceding
example and optionally in which the on-die programmable
architecturally-visible storage includes a static random
access memory (SRAM).

Example 5 includes the processor of any preceding
example and optionally in which the decode unit is also to
receive a data store instruction of the instruction set of the
processor. The data store instruction is to indicate a source
operand that is to include a second data that is to be stored in
the on-die programmable architecturally-visible storage, to
indicate a second data address that is to indicate where the
second data is to be stored in the on-die programmable archi-
tecturally-visible storage, and to indicate a second data size
that is to indicate a size of the second data. The processor is
operable, in response to the data store instruction, to store the
second data in the on-die programmable architecturally-vis-
ible storage at a location that is indicated by the second data
address.

Example 6 includes the processor of Example 5 and
optionally in which the data store instruction includes a user-
level instruction, and in which the source operand is to com-
prise a memory location.

Example 7 includes the processor of any of Examples 1-4
and optionally in which the on-die programmable architec-
turally-visible storage is configured to be programmed to
store the data by direct memory access (DMA).

Example 8 includes the processor of any preceding
example and optionally in which the decode unit is to decode
the data access instruction which has one or more bits to
explicitly specify the data size.

Example 9 includes the processor of any of Examples 1-7
and optionally in which the decode unit is to decode the data
access instruction which implicitly indicates but does not
explicitly specify the data size.

Example 10 includes the processor of any preceding
example and optionally in which the decode unit is to decode

10

15

20

25

30

35

40

45

50

55

60

65

28

the data access instruction which is to indicate the data size
which is capable of being any one 8-bits, 16-bits, 32-bits, and
64-bits.

Example 11 includes the processor of any preceding
example and optionally further including at least one data
cache having a cache data replacement mechanism, and in
which the on-die programmable architecturally-visible stor-
age does not have a cache data replacement mechanism.

Example 12 includes the processor of any preceding
example and optionally further including a model specific
register to store a start of a data structure in the on-die pro-
grammable architecturally-visible storage and a size of the
data structure.

Example 13 includes the processor of any preceding
example and optionally in which the data address represents
an offset from a first data stored in the on-die programmable
architecturally-visible storage to the data associated with the
data address.

Example 14 is a method in a processor that includes receiv-
ing a data access instruction of an instruction set of the pro-
cessor. The data access instruction indicating a data address
that is to be associated with data to be stored in an on-die
programmable architecturally-visible storage of the proces-
sor, indicating a data size associated with the data to be stored
in the on-die programmable architecturally-visible storage,
and indicating a destination storage location of the processor.
The method also includes storing the data, which is associated
with the data address and the data size, in the destination
storage location indicated by the data access instruction in
response to the data access instruction.

Example 15 includes the method of Example 14 and
optionally further including storing the data in the on-die
programmable architecturally-visible storage while the pro-
cessor is decoding and executing instructions.

Example 16 includes the method of Example 15 and
optionally in which storing the data in the on-die program-
mable architecturally-visible storage includes performing a
user-level data store instruction of the instruction set of the
processor. The user-level data store instruction indicating a
source operand having the data, indicating a second data
address that is equal to the data address of the data access
instruction, and indicating a second data size that is equal to
the data size of the data access instruction. Performing the
user-level data store instruction includes storing the data in
the on-die programmable architecturally-visible storage at a
location that is indicated by the second data address.

Example 17 includes the method of Example 15 and
optionally in which storing the data in the on-die program-
mable architecturally-visible storage includes storing the data
in the on-die programmable architecturally-visible storage
from a datastructure stored in memory through by direct
memory access (DMA).

Example 18 includes the method of any preceding example
and optionally in which receiving the instruction includes
receiving a user-level data access instruction associated with
user-level software.

Example 19 includes the method of any preceding example
and optionally further including accessing the data from the
on-die programmable architecturally-visible storage which
includes a static random access memory (SRAM).

Example 20 includes the method of any preceding example
and optionally in which receiving the instruction includes
receiving the data access instruction that has one or more bits
to explicitly specify the data size.

Example 21 includes the method of any of examples 14-19
and optionally in which receiving the instruction includes

US 9,207,880 B2

29

receiving the data access instruction that implicitly indicates,
but does not explicitly specify, the data size.

Example 22 includes the method of any preceding example
and optionally further including storing a datastructure hav-
ing the data in the on-die programmable architecturally-vis-
ible storage while the processor is operating in an electronic
device. The datastructure stores one of a set of values for a
transcendental function, a set of coefficients for an algorithm,
and a logic truth table.

Example 23 includes the method of any preceding example
and optionally further including performing a user-level
instruction to store a start of a data structure, which includes
the data, and which is stored in the on-die programmable
architecturally-visible storage, in a model specific register.
Also, performing a user-level instruction to store a size of the
data structure in the model specific register.

Example 24 is a system to process instructions that
includes an interconnect and a processor coupled with the
interconnect. The processor is to receive a data access instruc-
tion that is to indicate a data address that is to be associated
with data to be stored in an on-die programmable architec-
turally-visible storage of the processor, to indicate a data size
associated with the data to be stored in the on-die program-
mable architecturally-visible storage, and to indicate a desti-
nation storage location of the processor. The processor is
operable, in response to the data access instruction to store the
data, which is associated with the data address and the data
size, in the destination storage location that is to be indicated
by the instruction. The system also includes a dynamic ran-
dom access memory (DRAM) coupled with the interconnect.
The DRAM may optionally store a datastructure that is to
include the data. The datastructure may optionally include a
set of values for a transcendental function. The DRAM may
also optionally store an algorithm that is to use the transcen-
dental function.

Example 25 includes the system of Example 24 and option-
ally in which the processor is to store the data in the on-die
programmable architecturally-visible storage by performing
a user-level data store instruction.

Example 26 is an article of manufacture that includes a
non-transitory machine-readable storage medium. The non-
transitory machine-readable storage medium stores a data
access instruction. The data access instruction is to indicate a
data address that is to be associated with data to be stored in
an on-die programmable architecturally-visible storage of a
processor, is to indicate a data size associated with the data to
be stored in the on-die programmable architecturally-visible
storage, and is to indicate a destination storage location of the
processor. The data access instruction if executed by a
machine is operable to cause the machine to perform opera-
tions including storing the data, which is associated with the
data address and the data size, in the destination storage
location that is to be indicated by the data access instruction.

Example 27 includes the article of manufacture of
Example 26 and optionally in which the non-transitory
machine-readable storage medium also stores a user-level
data store instruction. The user-level data store instruction if
executed by the machine is operable to cause the machine to
perform operations including storing the data in the on-die
programmable architecturally-visible storage of a processor.

Example 28 includes the processor of any preceding
example and optionally in which the data size is less than one
8-bit byte.

Example 29 includes the processor of any preceding
example and optionally in which the data access instruction is
to indicate a plurality of data addresses associated with a
plurality of data stored in potentially non-contiguous loca-

30

35

40

45

55

30

tions of the on-die programmable architecturally-visible stor-
age, and wherein the execution unit, in response to the data
access instruction, is to store each of the plurality of data in
the destination storage location.

Example 30 includes the processor of any preceding
example and optionally in which the destination storage loca-
tion is to comprise a packed data operand that is to have a
plurality of packed data elements to include the plurality of
data.

Example 31 includes a processor or other apparatus that is
operable to perform the method of any of Examples 14-23.

Example 32 includes a processor or other apparatus that
includes means for performing the method of any of
Examples 14-23.

Example 33 includes a processor that includes modules,
units, logic, circuitry, means, or any combination thereof, to
perform the method of any of Examples 14-23.

Example 34 includes a computer system or other electronic
device including an interconnect, a processor coupled with
the interconnect, and at least one component coupled with the
interconnect that is selected from a DRAM, a graphics chip,
a wireless communications chip, a phase change memory,
and a video camera, the computer system or other electronic
device to perform the method of any of Examples 14-23.

Example 35 includes an optionally non-transitory
machine-readable medium that optionally stores or otherwise
provides an instruction that if and/or when executed by a
processor, computer system, or other machine is operable to
cause the machine to perform the method of any of Examples
14-23.

Example 36 includes a processor or other apparatus that is
operable to perform one or more operations or any method
substantially as described herein.

Example 37 includes a processor or other apparatus includ-
ing means for performing one or more operations or any
method substantially as described herein.

Example 38 includes a processor or other apparatus that is
operable to perform any of the instructions substantially as
described herein.

Example 39 includes a processor or other apparatus includ-
ing means for performing any of the instructions substantially
as described herein.

Example 40 includes a method that includes converting a
first instruction, which may be any of the instructions sub-
stantially as disclosed herein, and which is of a first instruc-
tion set, into one or more instructions of a second instruction
set. The method also includes decoding and executing the one
or more instructions of the second instruction set on a pro-
cessor. The executing includes storing a result in a destina-
tion. The result may include any of the results substantially as
disclosed herein for the first instruction.

Example 41 includes a processor or other apparatus includ-
ing a decode unit that is operable to decode instructions of a
first instruction set. The decode unit is to receive one or more
instructions that emulate a first instruction, which may be any
of the instructions substantially as disclosed herein, and
which is to be of a second instruction set. The processor or
other apparatus also includes one or more execution units
coupled with the decode unit to execute the one or more
instructions of the first instruction set. The one or more execu-
tion units in response to the one or more instructions of the
first instruction set are operable to store a result in a destina-
tion. The result may include any of the results substantially as
disclosed herein for the first instruction.

Example 42 includes a computer system or other electronic
device that includes a processor having a decode unit that is
operable to decode instructions of a first instruction set, and

US 9,207,880 B2

31

having one or more execution units. The computer system
also includes a storage device coupled to the processor. The
storage device is to store a first instruction, which may be any
of the instructions substantially as disclosed herein, and
which is to be of a second instruction set. The storage device
is also to store instructions to convert the first instruction into
one or more instructions of the first instruction set. The one or
more instructions of the first instruction set, when executed
by the processor, are operable to cause the processor to store
a result in a destination. The result may include any of the
results substantially as disclosed herein for the first instruc-
tion.

What is claimed is:

1. A processor comprising:

an on-die programmable architecturally-visible storage;

a decode unit to receive a data access instruction of an
instruction set of the processor, the data access instruc-
tion to indicate a data address that is to be associated
with data to be stored in the on-die programmable archi-
tecturally-visible storage, to indicate a data size associ-
ated with the data to be stored in the on-die program-
mable architecturally-visible storage, and to indicate a
destination storage location of the processor; and

an execution unit coupled with the decode unit and the
on-die programmable architecturally-visible storage,
the execution unit on-die with the on-die programmable
architecturally-visible storage, the execution unit oper-
able, in response to the data access instruction, to store
the data, which is associated with the data address and
the data size, in the destination storage location that is to
be indicated by the instruction, wherein the destination
storage location comprises an architectural register of
the processor.

2. The processor of claim 1, wherein the decode unit is to
decode the data access instruction which is a user-level
instruction.

3. The processor of claim 1, wherein the on-die program-
mable architecturally-visible storage comprises a type of
storage that data can be stored in after manufacture of the
processor.

4. The processor of claim 1, wherein the on-die program-
mable architecturally-visible storage comprises a type of ran-
dom access memory (RAM).

5. The processor of claim 1:

wherein the decode unit is also to receive a data store
instruction of the instruction set of the processor, the
data store instruction to indicate a source operand that is
to include a second data that is to be stored in the on-die
programmable architecturally-visible storage, a second
data address that is to indicate where the second data is
to be stored in the on-die programmable architecturally-
visible storage, and a second data size that is to indicate
a size of the second data; and

wherein the processor is operable, in response to the data
store instruction, to store the second data in the on-die
programmable architecturally-visible storage at a loca-
tion that is indicated by the second data address.

6. The processor of claim 5, wherein the data store instruc-
tion comprises a user-level instruction, and wherein the
source operand is to comprise a memory location.

7. The processor of claim 1, wherein the on-die program-
mable architecturally-visible storage is configured to be pro-
grammed to store the data by direct memory access (DMA).

8. The processor of claim 1, wherein the decode unit is to
decode the data access instruction which has one or more bits
to explicitly specify the data size.

10

15

20

25

30

35

40

45

50

55

60

65

32

9. The processor of claim 1, wherein the decode unit is to
decode the data access instruction which implicitly indicates
but does not explicitly specify the data size.

10. The processor of claim 1, wherein the decode unit is to
decode the data access instruction which is to indicate the data
size which is capable of being any one of a plurality selected
from 8-bits, 16-bits, 32-bits, and 64-bits.

11. The processor of claim 1, further comprising at least
one data cache having an autonomous data replacement
mechanism, and wherein the on-die programmable architec-
turally-visible storage does not have an autonomous data
replacement mechanism.

12. The processor of claim 1, further comprising a model
specific register to store a start of a data structure in the on-die
programmable architecturally-visible storage and a size of
the data structure.

13. The processor of claim 1, wherein the data address
represents an offset from a first data stored in the on-die
programmable architecturally-visible storage to the data
associated with the data address.

14. A method in a processor, the method comprising:

receiving a data access instruction of an instruction set of

the processor, the data access instruction indicating a
data address that is to be associated with data to be stored
in an on-die programmable architecturally-visible stor-
age of the processor, indicating a data size associated
with the data to be stored in the on-die programmable
architecturally-visible storage, and indicating a destina-
tion storage location of the processor; and

storing the data, which is associated with the data address

and the data size, in the destination storage location
indicated by the data access instruction in response to
the data access instruction, wherein the destination stor-
age location comprises a register of the processor.

15. The method of claim 14, further comprising storing the
data in the on-die programmable architecturally-visible stor-
age while the processor is decoding and executing instruc-
tions.

16. The method of claim 15, wherein storing the data in the
on-die programmable architecturally-visible storage com-
prises performing a user-level data store instruction of the
instruction set of the processor, the user-level data store
instruction indicating a source operand having the data, indi-
cating a second data address that is equal to the data address
of the data access instruction, and indicating a second data
size that is equal to the data size of the data access instruction,
and wherein performing the user-level data store instruction
includes storing the data in the on-die programmable archi-
tecturally-visible storage at a location that is indicated by the
second data address.

17. The method of claim 14, wherein storing the data in the
on-die programmable architecturally-visible storage com-
prises storing the data in the on-die programmable architec-
turally-visible storage from a datastructure stored in memory
by direct memory access (DMA).

18. The method of claim 14, wherein receiving the instruc-
tion comprises receiving a user-level data access instruction
associated with user-level software.

19. The method of claim 14, further comprising accessing
the data from the on-die programmable architecturally-vis-
ible storage which comprises a type of random access
memory (RAM), and wherein the data size is less than one
8-bit byte.

20. The method of claim 14, wherein receiving the instruc-
tion comprises receiving the data access instruction that has
one or more bits to explicitly specify the data size.

US 9,207,880 B2

33

21. The method of claim 14, wherein receiving the instruc-
tion comprises receiving the data access instruction that
implicitly indicates, but does not explicitly specify, the data
size.

22. The method of claim 14, further comprising storing a
datastructure having the data in the on-die programmable
architecturally-visible storage while the processor is operat-
ing in an electronic device, the datastructure storing one of a
set of values for a transcendental function, a set of coefficients
for an algorithm, and a logic truth table.

23. The method of claim 14, further comprising:

performing a user-level instruction to store a start of a data

structure, which includes the data, and which is stored in
the on-die programmable architecturally-visible stor-
age, in a model specific register; and

performing a user-level instruction to store a size of the

data structure in the model specific register.

24. A system to process instructions comprising:

an interconnect;

aprocessor coupled with the interconnect, the processor to

receive a data access instruction that is to indicate a data
address that is to be associated with data to be stored in
an on-die programmable architecturally-visible storage
of the processor, to indicate a data size associated with
the data to be stored in the on-die programmable archi-
tecturally-visible storage, and to indicate a destination
storage location of the processor, the processor operable,
in response to the data access instruction to store the
data, which is associated with the data address and the
data size, in the destination storage location that is to be
indicated by the instruction; and

a dynamic random access memory (DRAM) coupled with

the interconnect, the DRAM to store a datastructure that
is to include the data, wherein the datastructure is to
comprise a set of values for a transcendental function,
the DRAM also to store an algorithm that is to use the
transcendental function.

25. The system of claim 24, wherein the processor is to
store the data in the on-die programmable architecturally-
visible storage by performing a user-level data store instruc-
tion.

26. An article of manufacture comprising a non-transitory
machine-readable storage medium, the non-transitory
machine-readable storage medium storing a data access

10

15

20

25

30

35

40

34

instruction, the data access instruction to indicate a data
address that is to be associated with data to be stored in an
on-die programmable architecturally-visible storage of a pro-
cessor, to indicate a data size associated with the data to be
stored in the on-die programmable architecturally-visible
storage, and to indicate a destination storage location of the
processor, the data access instruction if executed by a
machine operable to cause the machine to perform operations
comprising:
storing the data, which is associated with the data address
and the data size, in the destination storage location that
is to be indicated by the data access instruction, wherein
the destination storage location comprises a register of
the processor.

27. The article of claim 26, wherein the non-transitory
machine-readable storage medium also stores a user-level
data store instruction, the user-level data store instruction if
executed by the machine operable to cause the machine to
perform operations comprising:

storing the data in the on-die programmable architectur-
ally-visible storage of the processor.

28. The processor of claim 1, wherein the data has the data
size which is less than one byte.

29. The processor of claim 1, wherein the data access
instruction is to indicate a plurality of data addresses associ-
ated with a plurality of data to be stored in potentially non-
contiguous locations of the on-die programmable architectur-
ally-visible storage, and wherein the execution unit, in
response to the data access instruction, is to store each of the
plurality of data in the indicated destination storage location.

30. The processor of claim 29, wherein the destination
storage location is to comprise a packed data register that is to
have a plurality of packed data elements to include the plu-
rality of data.

31. The processor of claim 1, wherein the data is to include
one of a value of a transcendental function, a coefficient of an
algorithm, and a value of a user-defined logic truth table.

32. The processor of claim 1, wherein the on-die program-
mable architecturally-visible storage is writable at runtime
responsive to a user-level instruction.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,207,880 B2 Page 1of1
APPLICATION NO. 1 14/142734

DATED : December §, 2015

INVENTOR(S) : Victor W. Lee

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 32, line 55, in claim 17, delete “datastructure” and insert -- data structure --, therefor.
In column 33, line 6, in claim 22, delete “datastructure” and insert -- data structure --, therefor.
In column 33, line 8, in claim 22, delete “datastructure” and insert -- data structure --, therefor.
In column 33, line 33, in claim 24, delete “datastructure™ and insert -- data structure --, therefor.

In column 33, line 34, in claim 24, delete “datastructure™ and insert -- data structure --, therefor.

Signed and Sealed this
Thirtieth Day of August, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

